Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
Nat Commun ; 15(1): 3380, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643172

RESUMO

While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Genoma
2.
Epigenetics Chromatin ; 17(1): 10, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643244

RESUMO

BACKGROUND: Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS: Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS: Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.


Assuntos
Cromatina , Cristalinas , Animais , Camundongos , Humanos , Células-Tronco Embrionárias Murinas/metabolismo , Cromossomos/metabolismo , Fatores de Transcrição/metabolismo , DNA/metabolismo , Epitélio/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Fator de Ligação a CCCTC/metabolismo
3.
Nat Commun ; 15(1): 2813, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561336

RESUMO

CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved protein, is known to play a critical role in chromatin structure. Post-translational modifications (PTMs) diversify the functions of protein to regulate numerous cellular processes. However, the effects of PTMs on the genome-wide binding of CTCF and the organization of three-dimensional (3D) chromatin structure have not been fully understood. In this study, we uncovered the PTM profiling of CTCF and demonstrated that CTCF can be O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that O-GlcNAcylation inhibits CTCF binding to chromatin. Meanwhile, deficiency of CTCF O-GlcNAcylation results in the disruption of loop domains and the alteration of chromatin loops associated with cellular development. Furthermore, the deficiency of CTCF O-GlcNAcylation increases the expression of developmental genes and negatively regulates maintenance and establishment of stem cell pluripotency. In conclusion, these results provide key insights into the role of PTMs for the 3D chromatin structure.


Assuntos
Genoma , Processamento de Proteína Pós-Traducional , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Cromatina
4.
Epigenetics Chromatin ; 17(1): 9, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561749

RESUMO

BACKGROUND: CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS: Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS: Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Animais Geneticamente Modificados/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Dimerização , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Mamíferos/genética
5.
Nucleic Acids Res ; 52(7): 3837-3855, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452213

RESUMO

CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.


Assuntos
Fator de Ligação a CCCTC , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II , DNA , Conformação de Ácido Nucleico , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/química , Humanos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Sítios de Ligação , DNA/metabolismo , DNA/química , DNA/genética , Ligação Proteica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/química , Linhagem Celular
6.
Nat Struct Mol Biol ; 31(3): 404-412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38499830

RESUMO

Cytosine DNA methylation is a highly conserved epigenetic mark in eukaryotes. Although the role of DNA methylation at gene promoters and repetitive elements has been extensively studied, the function of DNA methylation in other genomic contexts remains less clear. In the nucleus of mammalian cells, the genome is spatially organized at different levels, and strongly influences myriad genomic processes. There are a number of factors that regulate the three-dimensional (3D) organization of the genome, with the CTCF insulator protein being among the most well-characterized. Pertinently, CTCF binding has been reported as being DNA methylation-sensitive in certain contexts, perhaps most notably in the process of genomic imprinting. Therefore, it stands to reason that DNA methylation may play a broader role in the regulation of chromatin architecture. Here we summarize the current understanding that is relevant to both the mammalian DNA methylation and chromatin architecture fields and attempt to assess the extent to which DNA methylation impacts the folding of the genome. The focus is in early embryonic development and cellular transitions when the epigenome is in flux, but we also describe insights from pathological contexts, such as cancer, in which the epigenome and 3D genome organization are misregulated.


Assuntos
Metilação de DNA , Proteínas Repressoras , Animais , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC/metabolismo , Impressão Genômica , Cromatina , Mamíferos/genética
7.
Mol Cell ; 84(7): 1365-1376.e7, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452764

RESUMO

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Oncogenes , DNA/química
8.
Nucleic Acids Res ; 52(7): 3654-3666, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38300758

RESUMO

DNA Methylation is a significant epigenetic modification that can modulate chromosome states, but its role in orchestrating chromosome organization has not been well elucidated. Here we systematically assessed the effects of DNA Methylation on chromosome organization with a multi-omics strategy to capture DNA Methylation and high-order chromosome interaction simultaneously on mouse embryonic stem cells with DNA methylation dioxygenase Tet triple knock-out (Tet-TKO). Globally, upon Tet-TKO, we observed weakened compartmentalization, corresponding to decreased methylation differences between CpG island (CGI) rich and poor domains. Tet-TKO could also induce hypermethylation for the CTCF binding peaks in TAD boundaries and chromatin loop anchors. Accordingly, CTCF peak generally weakened upon Tet-TKO, which results in weakened TAD structure and depletion of long-range chromatin loops. Genes that lost enhancer-promoter looping upon Tet-TKO showed DNA hypermethylation in their gene bodies, which may compensate for the disruption of gene expression. We also observed distinct effects of Tet1 and Tet2 on chromatin organization and increased DNA methylation correlation on spatially interacted fragments upon Tet inactivation. Our work showed the broad effects of Tet inactivation and DNA methylation dynamics on chromosome organization.


Assuntos
Cromatina , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA , Dioxigenases , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/metabolismo , Dioxigenases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Ilhas de CpG/genética , Células-Tronco Embrionárias Murinas/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Epigênese Genética , Regiões Promotoras Genéticas , Cromossomos/genética
9.
Genes (Basel) ; 15(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397134

RESUMO

Characterization of gene regulatory mechanisms in cancer is a key task in cancer genomics. CCCTC-binding factor (CTCF), a DNA binding protein, exhibits specific binding patterns in the genome of cancer cells and has a non-canonical function to facilitate oncogenic transcription programs by cooperating with transcription factors bound at flanking distal regions. Identification of DNA sequence features from a broad genomic region that distinguish cancer-specific CTCF binding sites from regular CTCF binding sites can help find oncogenic transcription factors in a cancer type. However, the presence of long DNA sequences without localization information makes it difficult to perform conventional motif analysis. Here, we present DNAResDualNet (DARDN), a computational method that utilizes convolutional neural networks (CNNs) for predicting cancer-specific CTCF binding sites from long DNA sequences and employs DeepLIFT, a method for interpretability of deep learning models that explains the model's output in terms of the contributions of its input features. The method is used for identifying DNA sequence features associated with cancer-specific CTCF binding. Evaluation on DNA sequences associated with CTCF binding sites in T-cell acute lymphoblastic leukemia (T-ALL) and other cancer types demonstrates DARDN's ability in classifying DNA sequences surrounding cancer-specific CTCF binding from control constitutive CTCF binding and identifying sequence motifs for transcription factors potentially active in each specific cancer type. We identify potential oncogenic transcription factors in T-ALL, acute myeloid leukemia (AML), breast cancer (BRCA), colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate cancer (PRAD). Our work demonstrates the power of advanced machine learning and feature discovery approach in finding biologically meaningful information from complex high-throughput sequencing data.


Assuntos
Aprendizado Profundo , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , DNA/genética , Fatores de Transcrição/metabolismo
10.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244545

RESUMO

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma , Cognição , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
11.
Genome Biol ; 25(1): 40, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297316

RESUMO

BACKGROUND: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS: Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS: Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Masculino , Humanos , Proteínas de Ligação a DNA/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Cromatina , Sítios de Ligação
12.
Genome Biol ; 25(1): 15, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217027

RESUMO

The three-dimensional genome organization influences diverse nuclear processes. Here we present Chromatin Interaction Predictor (ChIPr), a suite of regression models based on deep neural networks, random forest, and gradient boosting to predict cohesin-mediated chromatin interaction strength between any two loci in the genome. The predictions of ChIPr correlate well with ChIA-PET data in four cell lines. The standard ChIPr model requires three experimental inputs: ChIP-Seq signals for RAD21, H3K27ac, and H3K27me3 but works well with just RAD21 signal. Integrative analysis reveals novel insights into the role of CTCF motif, its orientation, and CTCF binding on cohesin-mediated chromatin interactions.


Assuntos
Cromatina , 60634 , Fator de Ligação a CCCTC/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
13.
Cell Rep ; 43(1): 113663, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206813

RESUMO

The transcription factor ZNF143 contains a central domain of seven zinc fingers in a tandem array and is involved in 3D genome construction. However, the mechanism by which ZNF143 functions in chromatin looping remains unclear. Here, we show that ZNF143 directionally recognizes a diverse range of genomic sites directly within enhancers and promoters and is required for chromatin looping between these sites. In addition, ZNF143 is located between CTCF and cohesin at numerous CTCF sites, and ZNF143 removal narrows the space between CTCF and cohesin. Moreover, genetic deletion of ZNF143, in conjunction with acute CTCF degradation, reveals that ZNF143 and CTCF collaborate to regulate higher-order topological chromatin organization. Finally, CTCF depletion enlarges direct ZNF143 chromatin looping. Thus, ZNF143 is recruited by CTCF to the CTCF sites to regulate CTCF/cohesin configuration and TAD (topologically associating domain) formation, whereas directional recognition of genomic DNA motifs directly by ZNF143 itself regulates promoter activity via chromatin looping.


Assuntos
Proteínas Cromossômicas não Histona , 60634 , Proteínas Cromossômicas não Histona/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sítios de Ligação
14.
J Biol Chem ; 300(1): 105538, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072046

RESUMO

Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.


Assuntos
Fator de Ligação a CCCTC , Cromatina , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade , Chaperonas de Histonas , Animais , Camundongos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Replicação do DNA , Chaperonas de Histonas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Células NIH 3T3 , Reparo do DNA
15.
Biochim Biophys Acta Gen Subj ; 1868(1): 130500, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914145

RESUMO

BACKGROUND: Excessive inflammation is the main cause of treatment failure in neonatal pneumonia (NP). CCCTC-binding factor (CTCF) represents an important node in various inflammatory diseases. In the present study, we tried to clarify the function and underlying molecular mechanism of CTCF on an in vitro cellular model of NP, which was generated by simulating the human lung fibroblast cell line WI-38 with lipopolysaccharide (LPS). METHODS: The SUMOylation level and protein interaction were verified by Co-immunoprecipitation assay. Cell viability was measured by Cell Counting Kit-8 assay. Inflammatory factors were examined by Enzyme-linked immunosorbent assay. Cell apoptosis was evaluated by TUNEL assay. The binding activity of CTCF to target promoter was tested by chromatin immunoprecipitation and luciferase reporter assay. RESULTS: LPS treatment restrained cell viability, promoted the production of inflammatory factors, and enhanced cell apoptosis. CTCF overexpression played anti-inflammatory and anti-apoptotic roles. Furthermore, CTCF was modified by SUMOylation with small ubiquitin-like modifier protein 1 (SUMO1). Interfering with sumo-specific protease 1 (SENP1) facilitated CTCF SUMOylation and protein stability, thus suppressing LPS-evoked inflammatory and apoptotic injuries. Moreover, CTCF could bind to the forkhead box protein A2 (FOXA2) promoter region to promote FOXA2 expression. The anti-inflammatory and anti-apoptotic roles of CTCF are associated with FOXA2 activation. In addition, SENP1 knockdown increased FOXA2 expression by enhancing the abundance and binding ability of CTCF. CONCLUSIONS: SUMOylation of CTCF by SENP1 knockdown enhanced its protein stability and binding ability and it further alleviated LPS-evoked inflammatory injury in human lung fibroblasts by positively regulating FOXA2 transcription.


Assuntos
Lipopolissacarídeos , Peptídeo Hidrolases , Recém-Nascido , Humanos , Peptídeo Hidrolases/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Sumoilação , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Anti-Inflamatórios , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
16.
Nat Commun ; 14(1): 8101, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062010

RESUMO

CTCF plays an important role in 3D genome organization by adjusting the strength of chromatin insulation at TAD boundaries, where clustered CBS (CTCF-binding site) elements are often arranged in a tandem array with a complex divergent or convergent orientation. Here, using Pcdh and HOXD loci as a paradigm, we look into the clustered CTCF TAD boundaries and find that, counterintuitively, outward-oriented CBS elements are crucial for inward enhancer-promoter interactions as well as for gene regulation. Specifically, by combinatorial deletions of a series of putative enhancer elements in mice in vivo or CBS elements in cultured cells in vitro, in conjunction with chromosome conformation capture and RNA-seq analyses, we show that deletions of outward-oriented CBS elements weaken the strength of long-distance intra-TAD promoter-enhancer interactions and enhancer activation of target genes. Our data highlight the crucial role of outward-oriented CBS elements within the clustered CTCF TAD boundaries in developmental gene regulation and have interesting implications on the organization principles of clustered CTCF sites within TAD boundaries.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Animais , Camundongos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Sítios de Ligação
17.
Proc Natl Acad Sci U S A ; 120(51): e2313476120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085779

RESUMO

CD62L+ central memory CD8+ T (TCM) cells provide enhanced protection than naive cells; however, the underlying mechanism, especially the contribution of higher-order genomic organization, remains unclear. Systematic Hi-C analyses reveal that antigen-experienced CD8+ T cells undergo extensive rewiring of chromatin interactions (ChrInt), with TCM cells harboring specific interaction hubs compared with naive CD8+ T cells, as observed at cytotoxic effector genes such as Ifng and Tbx21. TCM cells also acquire de novo CTCF (CCCTC-binding factor) binding sites, which are not only strongly associated with TCM-specific hubs but also linked to increased activities of local gene promoters and enhancers. Specific ablation of CTCF in TCM cells impairs rapid induction of genes in cytotoxic program, energy supplies, transcription, and translation by recall stimulation. Therefore, acquisition of CTCF binding and ChrInt hubs by TCM cells serves as a chromatin architectural basis for their transcriptomic dynamics in primary response and for imprinting the code of "recall readiness" against secondary challenge.


Assuntos
Linfócitos T CD8-Positivos , Cromatina , Cromatina/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Sítios de Ligação , Genômica
18.
Funct Integr Genomics ; 23(4): 329, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910254

RESUMO

Improved chondrogenic differentiation of mesenchymal stem cells (MSCs) by genetic regulation is a potential method for regenerating articular cartilage. LncRNA MIR22HG has been proven to accelerate osteogenic differentiation, but the regulation mechanism of chondrogenic differentiation is still unclear. Human adipose-derived stem cells (hADSCs) have been widely utilised for bone tissue engineering applications. The present study aimed to examine the effect of MIR22HG on the chondrogenic differentiation of hADSCs. The results confirmed that MIR22HG was downregulated in the process of chondrogenic differentiation. Subsequently, gain- and loss-of-function of MIR22HG experiments showed that the overexpression of MIR22HG suppressed the deposition of cartilage matrix proteoglycans and decreased the expression of cartilage-related markers (e.g. Sox9, ACAN and Col2A1), whereas the knockdown of MIR22HG had the opposite effect. MIR22HG could bind to CTCF (CCCTC-binding factor), and CTCF could bind to the CRLF1 (cytokine receptor-like factor 1) promoter and upregulate CRLF1 gene expression. Besides, inhibition of CRLF1 can reverse the effect of MIR22HG on cell chondrogenic differentiation of hADSCs. Taken together, our outcomes reveal that MIR22HG suppressed chondrogenic differentiation by interaction with CTCF to stabilise CRLF1.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Osteogênese , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/farmacologia , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas
19.
Cell ; 186(24): 5269-5289.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995656

RESUMO

A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.


Assuntos
Cromatina , Genoma , Linfócitos B/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Humanos , Animais , Camundongos
20.
Sci Adv ; 9(45): eadi2095, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939182

RESUMO

Co-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response. Abrogation of TOP2B leads to the diminished recruitment of XPF, CTCF, and the cohesin subunits to promoters of actively transcribed genes and R-loops and the concurrent impairment of CTCF-mediated DNA looping. Together, our findings disclose an essential role for XPF with TOP2B and the CTCF/cohesin complex in R-loop processing for transcription activation with important ramifications for DNA repair-deficient syndromes associated with transcription-associated DNA damage.


Assuntos
Proteínas de Ligação a DNA , Estruturas R-Loop , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cromossomos , Reparo do DNA , Cromatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...